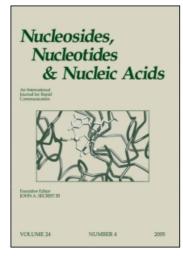
This article was downloaded by:


On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Antiviral Activity of Selected Nucleoside Analogues Against Human Herpes Virus Type 6

D. Reymen^a; L. Naesens^a; J. Balzarini^a; A. Holy^b; E. De Clercq^a

^a Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium ^b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic

To cite this Article Reymen, D. , Naesens, L. , Balzarini, J. , Holy, A. and De Clercq, E.(1995) 'Antiviral Activity of Selected Nucleoside Analogues Against Human Herpes Virus Type 6', Nucleosides, Nucleotides and Nucleic Acids, 14: 3, 567 — 570

To link to this Article: DOI: 10.1080/15257779508012429 URL: http://dx.doi.org/10.1080/15257779508012429

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ANTIVIRAL ACTIVITY OF SELECTED NUCLEOSIDE ANALOGUES AGAINST HUMAN HERPES VIRUS TYPE 6

D. Reymen^{1*}, L. Naesens¹, J. Balzarini¹, A. Holy² and E. De Clercq¹

¹Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium; ²Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic

ABSTRACT: HHV-6 was evaluated *in vitro* for its susceptibility to a broad range of nucleoside analogues. PFA and several acyclic nucleoside phophonates emerged as the most potent inhibitors of HHV-6 replication as monitored by a newly developed immunofluorescence / flow cytometric assay as well as by microscopical evaluation of their inhibitory effect on HHV-6-induced cytopathogenicity.

INTRODUCTION

Human herpes virus type 6 (HHV-6) was initially isolated from peripheral blood lymphocytes of patients with acquired immune deficiency syndrome (AIDS) or various lymphoproliferative diseases¹. The etiological role of HHV-6 in nervous system diseases or lymphadenopathies is still debated. HHV-6 may be a co-factor in the pathogenesis of AIDS in HIV-infected patients^{2,3}. HHV-6 could also be involved in opportunistic infections associated with immunosuppression, as are the other human herpes viruses.

The present study was aimed at evaluating the *in vitro* sensitivity of HHV-6 to several antiviral compounds, including the acyclic nucleoside phosphonates. This class of broadspectrum antiviral agents exhibit potent and selective activity against DNA- and/or retroviruses⁴.

D. Reymen is Research Assistant of the Belgian National Foundation of Scientific Research (N.F.W.O.).

568 REYMEN ET AL.

MATERIALS AND METHODS

Virus and Cells. The GS strain of HHV-6, originally isolated from a patient with a lymphoproliferative disorder¹, was kindly provided by Dr. D.V. Ablashi (National Cancer Institute, National Institute of Health, Bethesda, MD, USA). Antiviral activity and cytotoxicity assays were performed in human T-lymphoblastoid HSB-2 cells (ATCC CCL 120.1), propagated in RPMI 1640 medium.

Antiviral Activity Assays. HSB-2 cells were infected with HHV-6 and incubated with various concentrations of the test compounds (for abbreviations of compounds: see footnote b to Table 1). Microscopical evaluation of viral cytopathic effect (CPE) (i.e., appearance of large refractile cells) was performed on day 7. An indirect immunofluorescence assay was performed on the same cell cultures. Therefore, the samples were incubated with a high-titer anti-HHV-6 polyclonal antiserum, kindly provided by Dr. G. R. F. Krueger (University of Cologne, Germany). In a second step, the cells were labeled with fluorescein isothiocyanate conjugated F(ab')₂ fragments of rabbit anti-human immunoglobulin antibody. Then, the samples were analysed with a fluorescence activated cell sorter.

Cytotoxicity Assay. HSB-2 cells were cultured in the presence of serial dilutions of the test compounds. After 7 days, the number of cells was determined in a Coulter counter.

RESULTS AND DISCUSSION

In order to evaluate the anti-HHV-6 activity of selected nucleoside analogues, we developed an indirect immunofluorescence / flow cytofluorographic method to assess the inhibitory effect of the compounds on HHV-6-induced antigen expression in HHV-6-infected cells. The compounds were also evaluated microscopically for their inhibitory effect on HHV-6-induced cytopathogenicity. There was a close correlation between the antiviral data obtained by these two assays (Table 1). PFA has been found to protect HSB-2 cells against HHV-6 infection at a concentration of approximately 20 μ g/ml^{5,6}. Under the experimental conditions of our study, PFA emerged as the most potent inhibitor of HHV-6 replication with an EC₅₀ of 2.2 μ g/ml as monitored by the indirect immunofluorescence / flow cytometric method, and a selectivity index of 125. ACV appeared to have a slight protective effect with an EC₅₀ of 70 μ g/ml and a selectivity index of only 3. This finding is in agreement with previous reports^{5,6}. GCV has been reported to exhibit incomplete

TABLE 1. Inhibitory effect of selected nucleoside analogues on the replication of HHV-6 in HSB-2 cells^a.

Compoundb	EC ₅₀ ^c (μg/ml) based on		CC ₅₀ d (µg/ml)	Selectivity indexe
	СРЕ	IF		· · · · · · · · · · · · · · · · · · ·
PFA	4.4 ± 1.8	2.2 ± 0.8	274 ± 23	125
PMEDAP	3.3 ± 1.3	2.8 ± 1.9	51 ± 7	18
PMEA	7.0 ± 3.9	8.5 ± 7.1	48 ± 12	6
(S)-HPMPA	3.1 ± 1.1	2.7 ± 0.9	14 ± 3	5
(S)-HPMPC	4.6 ± 1.5	3.8 ± 2.9	39 ± 5	10
(S)-HPMPDAP	8.1 ± 0.9	12.1 ± 7.3	99 ±43	8
(S)-FPMPA	NAf	NA	NDg	_
(R)-PMPDAP	NA	NA	ND	_
ACV	39.8 ± 5.0	69.8 ± 15	204 ± 18	3
GCV	NA	NA	15 ± 2	-
BVDU	NA	NA	0.2	

^aAll data represent mean values (± standard deviation) of one to four separate experiments.

inhibition of HHV-6 replication in HSB-2 cells⁵. However, marked anti-HHV-6 effect was noted in peripheral blood mononuclear cells (PBMC)⁶. In our hands, GCV proved not active at a subtoxic concentration. These conflicting observations could be related to the stringent experimental conditions of our study [high viral load and long (7-day) incubation period of virus-infected cells].

bAbbreviations of test compounds: PFA (foscarnet, phosphonoformic acid); ACV [acyclovir, 9-(2-hydroxyethoxymethyl)guanine); GCV(ganciclovir, 9-(1,3-dihydroxy-2-propoxymethyl)-guanine); BVDU [brivudin, (E)-5-(2-bromovinyl)-1-(B-D-2-deoxyribofuranos-1-yl)uracil]; PMEA [9-(2-phosphonylmethoxyethyl)-adenine]; PMEDAP [9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine]; (S)-HPMPA [(S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine]; (S)-HPMPC [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)-cytosine]; (S)-HPMPDAP [(S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)-2,6-diaminopurine]; (R)-PMPDAP [(R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine] and (S)-FPMPA [(S)-9-(3-fluoro-2-phosphonylmethoxypropyl)adenine].

^CCompound concentration required to inhibit viral replication by 50%, based on microscopical evaluation of HHV-6-induced cytopathogenic effect (CPE), or on immunofluorescence / flow cytometric analysis of HHV-6-specified antigen expression (IF).

^dCompound concentration causing 50% inhibition of cell growth, as measured by cell counting with a Coulter Counter.

eRatio of CC50 to EC50.

fNot active at subtoxic concentration.

gNot determined.

570 REYMEN ET AL.

This is the first report on the anti-HHV-6 activity of a number of acyclic nucleoside phophonates. PMEDAP, (S)-HPMPA and (S)-HPMPC proved to be equally active as PFA with an EC₅₀ ranging from 2–4 μ g/ml. PMEA and (S)-HPMPDAP were effective at an EC₅₀ of 8.5 μ g/ml and 12.1 μ g/ml, respectively; whereas (S)-FPMPA and (R)-PMPDAP showed no activity at subtoxic concentrations. The highest selectivity indexes were recorded for PMEDAP (18), (S)-HPMPC (10) and (S)-HPMPDAP (8), followed by PMEA (6) and (S)-HPMPA (5).

In conclusion, for the acyclic nucleoside phosphonates, there was a close correlation between their anti-HHV-6 activity and their activity against other herpesviruses (i.e., herpes simplex virus type 1 and 2 and cytomegalovirus)^{4,7,8}. The fact that PMEA and PMEDAP are, on one hand, potent inhibitors of human immunodeficiency virus (HIV) and, on the other hand, exhibit potent activity against herpesviruses including HHV-6, makes these compounds of potentially great value in the treatment of AIDS patients suffering from intercurrent herpesvirus infections. We now plan to evaluate the effects of the acyclic nucleoside phophonates on mixed infections of HIV and HHV-6.

REFERENCES

- Salahuddin, S.Z.; Ablashi, D.V.; Markham, P.D.; Josephs, S.F.; Sturzenegger, S.; Kaplan, M.; Halligan, G.; Biberfield, P.; Wong-Staal, F.; Kramarsky, B.; Gallo, R.C. Science 1986, 234, 596-600.
- Ablashi, D.V.; Josephs, S.F.; Buchbinder, A.; Hellman, K.; Nakamura, S.; Llana, T.; Lusso, P.; Kaplan, M.; Dahlberg, J.; Memon, S.; Iman, F.; Ablashi, K.L.; Markham, P.D.; Kramarsky, B.; Krueger, G.R.F.; Biberfield, P.; Wong-Staal, F.; Salahuddin, S.Z.; Gallo, R. J. Virol. Methods 1988, 21, 29-48.
- 3. Fox, J.; Briggs, M.; Tedder, R.S. Lancet 1988, II, 396-397.
- 4. De Clercq, E. Biochem. Pharmacol. 1991, 42, 963-972.
- Streicher, H.Z.; Hung, C.L.; Ablashi, D.V.; Hellman, K.; Saxinger, C.; Fullen, J.; Salahuddin, S.Z. J. Virol. Methods 1988, 21, 301-304.
- Agut, H.; Collandre, H.; Aubin, J.-T.; Guétard, D.; Favier, V.; Ingrand, D.; Montagnier, L.; Huraux, J.-M. Res. Virol. 1989, 140, 219-228.
- Balzarini, J.; Holý, A.; Jindrich, J.; Naesens, L.; Snoeck, R.; Schols, D.; De Clercq, E. Antimicrob. Agents Chemother. 1993, 37, 332-338.
- 8. Neyts, J.; De Clercq, E. Biochem. Pharmacol. 1994, 47, 39-41.